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The investigatiou of nonsta t ionary  shocks in dense med ia  is of in te res t  for  many  p rob l ems  of shock phys -  
ics which occur ,  f o r  instance,  in the analys is  of m e t e o r  impacts ,  powerful l a s e r  radia t ion in terac t ion  with a 
subs tance ,  shock  methods of obtaining new m a t e r i a l s ,  explosions in dense media ,  e tc .  [1-5].  In a number  of 
such p rob l ems ,  the propagat ion  of shocks with p r e s s u r e  ampli tudes  cons iderably  exceeding the shea r  modulus 
of the subs tance  but l e s s  than the modulus  of mul t i l a te ra l  c o m p r e s s i o n  mus t  be invest igated.  Hence,  to de -  
sc r ibe  the s ta te  of the medium in this case ,  a hydrodynamic  approximat ion [1] is valid,  but Bu rge r s  equation 
[6] can be used  to  analyze the propagat ion  of a shock  pulse t r a i n  ~ i th  diss ipat ion taken into account.  In this 
pape r  plane p rob l ems  are  examined.  In this  case  the Burge r s  equation (BE) is solved exact ly fo r  physical ly  
in teres t ing  boundary conditions and the p rob lem is reduced to ext rac t ing  the information f r o m  the solution 
obtained. 

I f  a p r e s s u r e  pulse applied to a boundary c a n b e  approximated  by a s imple  function of the t ime ,  a 5 or  
s tep function, say,  the analys is  of the solution of the BE is not complex [6]. Examinat ion of the p rob l ems  with 
more  complex boundary conditions is of in t e res t .  In pa r t i cu la r ,  evolution of a c o m p r e s s i v e  pulse t ra ins ,  oc-  
cur r ing  under  succes s ive  impac ts  on a spec imen  su r face ,  mus t  be invest igated for  p rac t i ca l  applicat ions.  The 
formula t ion  of such  a p rob lem is  because  of the r equ i r emen t  to v a r y  the shape of the p r e s s u r e  pulse applied 
to the boundary which often occurs  in expe r imen t s  on the shock c o m p r e s s i o n  of condensed subs tances .  P r e s -  
su re  pulses ,  obtained when using impac to r s ,  shor t  l a s e r  pu lses ,  e lec t ron ic  impac t s ,  and detonation of the l ay e r s  
of condensed high explos ives ,  have a qual i ta t ively s i m i l a r  shape,  a s teep  front,  and a smal l  d rop-of f  domain.  
Hence, in p r a c t i c e  it is convenient to r ea l i ze  a change in the compress ion  wave shape by using t r a ins  of p r e s -  
su re  pulses  gene ra t ed  by a pulse l a se r ,  say .  The se lec t ion of the l a g t i m e  between the l a s e r  pulses  can yield 
the poss ib i l i ty  of  forming a wave with the given p a r a m e t e r s  in the medium.  Moreover ,  ut i l izat ion of a l a s e r  
pulse t r a i n  will p e r m i t  diminution of the influence of sc reen ing  of the su r face  of the condensed substance  by 
rupture  products  [2], i .e . ,  opt imal  conditions fo r  shock fo rmat ion  of compara t ive ly  long duration are  achieved. 

The evolution of weak shock  pulse t r a in s  is examined below. E s t i m a t e s  of the cha r ac t e r i s t i c  d is tances  
for  m e r g e r  of the pulses  and the ampli tudes  being shaped during wave m e r g e r  a re  obtained. The possibi l i ty  
of increas ing  the dynamic wave p a r a m e t e r s  (energy,  momentum,  etc.) at a given dis tance f r o m  the boundary 
su r face  because  of the se lec t ion of the lag t ime  between the pulses  in the t r a in  is  shown. 

1. If the equations of d iss ipa t ive  hydrodynamics  closed by an equation of s t a te  of M i e - G r u n e i s e n  or Tait  
type,  or  the ideal gas  equation of s ta te  a re  taken as the initial  sy s t em,  then applicat ion of the methods of non-  
l inea r  wave theory  [6] reduce  the BE to the f o r m  

Oq Oq - -  02q (t  -[- n) orn (1) ~ - - q ~ - - b ~ ,  ~-- ~K----~' 

�9 where ~ = ~t - (om/Ko; b ---- (i+n) ~ -~ 4 ~ ~ _ ; g = p/Mo; m is the Lagrange mass coordinate; K 0 and M 0, 

impedance and compression modulus of the medium; ~, fl, and ~, respectively, volume and shear viscosity co- 
efficients and the heat conduction; and, n, exponent in the ideal gas of Tait equation of state, where the n = 

(~P~)s asp P0 ./~ )s is a constant for an equation of state of Mie-Gruneisen type. Here p is the pressure, p 

is the density, S is the entropy, and w -i is the characteristic time scale from the boundary condition introduced 
to make (i.i) dimensionless. It must be noted that the BE in the form (I.i) can be obtained also from the non- 
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Fig. 1 

l i nea r  e las t ic i ty  theory  equations [7], the equations descr ibing the motion of ce r ta in  he te rogeneous  media  [8], 
etc. ,  where the influence of t he  specif ic  p r o p e r t i e s  of the medium is fel t  only in the dependence of the d i s s i -  
pat ive fac tor  b on the p a r a m e t e r s  of the medium,  in the magnitude of the impedance  and c o m p r e s s i o n  modulus 
of the medium.  

Let us assume the dimensionless shock pulse amplitude on the boundary to be characterized by a certain 
small parameter a. Then the relative influence of the dissipation and nonlinearity on evolution of the wave 
shape is determined by the Reynolds number Re = a/4~b. Let us examine two cases of large and moderate 
Reynolds numbers separately. 

2. For large Reynolds numbers the dissipative term in (I.i) can be neglected by eliminating the ambiguity 
in the wave profile by using the "equal area" rule resulting from (l.1) [6]. On the boundary of the medium let 
the pressure vary according to the law (Fig. i) 

Is1 (i - Uo)%), ~ ~ (0, oh)' 
q (0, ~) = {% ( l  - -  (~ - -  o)'~ 1 - -  o ~ ) / o ' ~ ) ,  ~ ~ ((o" 5 + e~ ,  or5  + o)r 2 + e , ) ,  ( 2 . 1 )  

[0, ~ 6 (o, ~%) U (~% + coT, o)% + o,~ + c0" 9, 

where w -1 = 71 + T 2 + 7. 

Let us consider certain characteristic parameters of the evolution of a train of two shock pulses (2.1) in 

the limit as Re ~ oo. At a certain distance from the boundary surface the pulses merge completely; the wave 
profile becomes triangular. The distance from the boundary (in mass) at which the shock discontinuities merge, 

i.e., the wave emerges into the asymptotic regime [6], is 

----\ A2, (2.2) ~ m = % c l + n ~ L % % \  t -%) ~ , + B ) 2 _ l j ,  

where  

(82~ 2 -~- E1~1~ 1/2 A 2 "~2 (E12:2 - -  82T1) 

As follows f rom (2.2), if the  lag t ime  between pulses  7 is much less  than the duration of the second pulse,  then 
the m e r g e r  distance grows l inear ly  with T; if 7 << 72, then the growth law is  pa rabo l ic .  At the t ime  of m e r g e r ,  
the amplitude and duration of the resu l tan t  wave equal 

%'~2 (1 1 ~ - I  
q~=*-~T.~  + ~ ]  ; 

(2.3) 

Another important  p a r a m e t e r  for  pulse t ra in  invest igat ion is the jump in ampli tude during m e r g e r  of the 
discontinuities, equal to 

We determine the quantities EIT i and ~2T2 proportional to the mechanical momentum transmitted to the medi- 
um in the first and second impacts, respectively, in a first approximation. For constant EIT i and e2T2 it fol- 
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lows f r o m  (2.2) tha t  the m e r g e r  d i s tance  m m g r o w s  as vl i n c r e a s e s  f o r  72 = const  and as  72 i n c r e a s e s  f o r  
71 = const .  In the second  c a s e  the g rowth  of m m  is s imp ly  r e l a t ed  to  the diminut ion of the init ial  ampl i tude  
of the over tak ing  pulse  and,  t h e r e f o r e ,  as  the  ve loc i ty  of p ropaga t ion  of the s econd  discontf lmity d imin i shes .  
In o r d e r  to explain  the g rowth  of m m  with the g rowth  of ~i, le t  us note that the p ropaga t ion  ve loc i ty  of the low 
discont inui ty  in the  m a s s  of subs tance  equals  

d-7 ~ -- "r t + 2%~% 
(l--}-n) ,r12 ~_( t+n)Koj  

and d e c r e a s e s  as  T 1 g r o w s .  Hence,  the g rowth  of m m with T i is expla ined by the i n c r e a s e  in the init ial  d i s -  
t ance  be tween  d i scont inu i t i es ,  which t u r n s  out  to  be m o r e  e s sen t i a l  than  the diminut ion in the low discont inui ty  
ve loc i ty .  

In case  the dura t ions  of both pu lses  a r e  s igni f icant ly  l e s s  than the lag  t i m e  T, f o r m u l a s  (2.2)-(2.5) s i m -  
pl ify s igni f icant ly .  F o r m a l l y  this  s impl i f i ca t ion  c o r r e s p o n d s  to  the p a s s a g e  to  the l imi t  Ti, T2 - -  0 f o r  g iT i ,  
efT2 = cons t .  F o r  ins tance ,  the e x p r e s s i o n s  f o r  the  m e r g e r  d i s tance  and ampl i tude  take  the f o r m  

E:w~ "K e(~ -{- i )  qm= (t -}- V f  ram-- (t -~ n)e2,, ~ [ 1 e:x------~- ' ~ ~1~1 -~ e,'2/ 

3. Let  us now c o n s i d e r  the case  of f ini te  d i s s ipa t ive  f a c t o r  in (1.l) .  Since the H o p f - C o l e  t r a n s f o r m a -  
t ion  [6] q = 2b (in U)'~ of the  BE r e s u l t s  in a l i n e a r  hea t  conduct iv i ty  equat ion,  the so lu t ion  of (1.1) f o r  an a r -  
b i t r a r y  boundary  condit ion can be w r i t t e n  down at once.  As be fo re ,  le t  two s u c c e s s i v e  p r e s s u r e  pu l se s  be 
given on the boundary  ~ = 0. If the dura t ion  of each is  c o n s i d e r a b l y  l e s s  than the lag t ime  T, then the boundary  
condi t ions  can be app rox ima ted  by two 6 - func t ions  s e p a r a t e d  by the t ime in te rva l  T, i .e . ,  

(3.:) 

It is  convenient  to  r e p r e s e n t  the so lu t ion  of the p r o b l e m  ( l . l ) ,  (3.1) in the f o r m  

e r l + r f - t  y e r l (e  r ~ - l )  ~ - -"  

S 
where 

r :  = ~:::/2b; r ,  = ~,:,t2b; y = ~ / 2 V ~ ;  x = : o ) l f K ~ .  

As b~ g r o w s ,  the las t  t e r m  in (3.2) d e c r e a s e s  and the so lu t ion  goes  a sympto t i ca l ly  into the s e l f - s i m i l a r  r e -  
g ime  co r r e spond ing  to  p ropaga t ion  of a s ingle  c o m p r e s s i o n  pulse .  As in the c a s e  Re - -  oo, we d e s c r i b e  the  
m e r g e r  of output pu lses  in the a sympto t i c  r e g i m e .  

Impor tan t  c h a r a c t e r i s t i c s  of wave p ropaga t ion  a re  e n e r g y  and m o m e n t u m .  In c o n f o r m i t y  with the quad-  
-i-co 

ra t ic  approximat ion  under  cons ide ra t ion ,  m o m e n t u m  in a f i r s t  approx ima t ion  I = .I q~ r e m a i n s  constant ,  and 

+:o 
the to ta l  va lues  of the  ene rgy  and m o m e n t u m  will  v a r y  only because  of the t e r m  E (~) = .I qfd~" T h e  solut ion of 

(~) (Uy/U)r 2 the  p r o b l e m  (1.1), (3.1) is p e r f o r m e d  n u m e r i c a l l y ,  and the e n e r g y  ](z) = (~/463)V ~ E = f is r e p r e s e n t e d  

in Fig .  2 f o r  d i f ferent  F 1 and 1" 2, Curve  1 c o r r e s p o n d s  to F 1 =5 ,  F 2 =5;  2) r 1 =10 ,  F 2 =5 ;  3) r i =5 ,  F 2 =10;  
4) F i =15 ,  F 2 =5 ;  5) F 1 =10 ,  1" 2 =10;  6) F 1 =5 ,  1" 2 =15 .  Each  cu rve  in F ig .  2 includes an uppe r  a n d l o w e r  
pla teau on which J(x) is independent  of x.  The l o w e r  p la teau c o r r e s p o n d s  to  independent  pulse  p ropaga t ion  
when in t e rac t ion  is s l ight ,  while the  e n e r g y  g(x) is d e t e r m i n e d  by the s u m  of the pulse  e n e r g i e s .  S tar t ing  
with a c e r t a i n  d i s tance  f r o m  the boundary ,  the s econd  pulse  ove r t akes  the f i r s t ;  they  s t a r t  to  i n t e r a c t  in ten-  
s ive ly  [3(x) g rows  h e r e ] .  F o r  a c e r t a i n  x m in te rac t ion  a l m o s t  c ea se s  (the pu l ses  m e r g e ) ,  and f o r  x < x m the 
r e su l t an t  pu l se  e m e r g e s  on the a sympto t i c  of the s e l f - s i m i l a r  wave,  which c o r r e s p o n d s  to the solut ion (3.2) 
with x = 0, and J is again Independent  of x. T h e r e f o r e ,  the d is tance  x m of pulse  m e r g e r  can a l r eady  be e s -  
t ima ted  f r o m  Fig .  2, f o r  example  x m ~ 0.5 fo r  curve  4. In o r d e r  to  e s t ima te  the c h a r a c t e r i s t i c  d is tance  of 
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pu lse  m e r g e r  f o r  a cont inuous s e r i e s  of v a l u e s  r 1 and F2, we f ind the  s e l f - s i m i l a r  so lu t ion  bes t  approx ima t ing  
(3,2) in the l imi t  of l a rge  b~ by fol lowing [1]. F o r  a m o m e n t u m  I g iven  in a f i r s t  approx imat ion ,  the s e l f -  
s i m i l a r  solut ion U ~ of the BE is d e t e r m i n e d  to  the  a c c u r a c y  of a shif t  t r a n s f o r m a t i e n  of the independent  v a r i -  
ables  U ~ = U~ § ~ 0) / (~  + ~0)1/2]. Expanding q0 in ~ 0 / (by ) l / 2  and ( b v ~  ", and q i n  x,  we can obtain by a 
spec ia l  s e l ec t ion  of ~ 0 and V0 tha t  the ampl i tudes  q~ m and qm wil l  d i f fe r  by  t e r m s  of o r d e r  (b~) -2. As is e a s y  
to  show, h e r e  

~-~t o o, ~-~,o_ ~ / I  ( o n .  ~) (~r~- l) 
= 4b (--L+r--~-_ ~)~ 

the  d e s i r e d  s e l f - s i m i l a r  so lu t ion  c o r r e s p e n d s  to a s h o r t  i m p a c t  on the m e d i u m  at the t ime  t = ~o-12~~ + n ) ,  
whe re  the s u r f a c e  on which  the impac t  i s  execu t ed  is  to the left  of  the  t r u e  boundary  s u r f a c e  by a d is tance  m ~ = 
K0o~ -1 2~0 / (1  + n).  

To e s t i m a t e  the  m e r g e r  d i s tance ,  i .e . ,  the  e m e r g e n c e  into the s e l f - s i m i l a r  r e g i m e ,  we d e f i n e t h i s  quan-- 
t i ty  as  the d i s t ance  i n  which  1 qrn/q~ - 1 t << 1. We have  

[~ (r, + r,) 2"~ (2"~ - ~) ( /~ - 0 ( / ~ §  : ,n + ,)]'.~, 
b~m~ 0~ ~" . . . . . .  ( j ~ + r ~ ,  ~)~' 

F(F  1 + F 2) I s  the coord ina te  Ym of the s e l f - s i m i l a r  wave ampl i tude  q ~  found a s  the so lu t ion  of the equat ion 

i -~- erl+r2--~-~ 1 .-~o e-t2dt - - } - i F - l e - r ~  = O. 

~ne dependence  F (F  i + F 2) is shown in Fig .  3. Us ing  the  r e su l t s  of the n u m e r i c a l  solut ion,  we s e t  the  p r o p o r -  
t iona l i ty  f a c t o r  e equal to  0 = 9.2 f o r  any r i and F 2 ~ 7; Le t  us e s t ima te  the ampli tude in d i s t ances  (3.3) 

2b 
qm= - g "/b ~m~- ; ' n ~ n  ~ F (r 1 + r 0. (3.4) 

Let  us note tha t  i t  is f o r m a l l y  imposs ib l e  to pas s  to  the l imi t  as b - -  0 in (3.3) s ince  the expans ions  p e r f o r m e d  
a re  val id  only fo r  l a rge  b~ and sma l l  x < 1. A c o m p a r i s o n  with the n u m e r i c a l  so lu t ion  shows tha t  f o r  F 2 > 7 
[accord ing  to (3.3) this  c o r r e s p o n d s  to  x m > i]  the  m e r g e r  d i s tance  Um d imin i shes  m o r e  s lowly than  is given 
by (3.3). The qual i ta t ive  f e a t u r e s  of the dependences  of x m (or Urn) on F i and F 2, which  a re  seen  in F ig .  2, 
a re  d e s c r i b e d  wel l  by (3.3). Let  us  a l so  note tha t  the va lues  of the ampl i tude  qm computed  by means  of (3.3) 
and (3.4) f o r  F z f 7 (it is  n e c e s s a r y  to  s e t  w7 _~ i h e r e  s ince  w i + 7 2 << T by assumpt ion)  d i f fer  by not  m o r e  
than  5 - 1 0 ~  f r o m  those  which  have  been obta ined because  of the n u m e r i c a l  solut ion.  

T h e r e f o r e ,  the se l ec t ion  of the delay t ime  ~ (if T is s e l e c t e d  as the c h a r a c t e r i s t i c  dura t ion  w - I  = T, then 
we v a r y  ~-i and r2 in l" i and F2) p e r m i t s  obtaining a wave with g iven va lues  of the ampl i tude ,  ene rgy ,  and 
m o m e n t u m  at a g iven d i s t ance  f r o m  the bounda ry  on which the l a s e r  pulse  t r a in  ac t s ,  s ay  approx ima te ly  in 
a g r e e m e n t  with the s a m e  quant i t ies  f o r  a wave c o r r e s p o n d i n g  to such a s ingle  ac t ion on the boundary  77 = -  U ~ 
whose  m o m e n t u m  in a f i r s t  app rox ima t ion  will  equal  the m o m e n t u m  of the t r a i n .  However ,  as a l ready  r e -  
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marked,  by using multiple action the losses  because of shielding the surface  of the condensed substance by rup-  
ture  products are diminished substantially while a pulse of comparat ively large duration is fo rmed  in the m e r -  
ge r  distance. In a number  of cases  taldng account of the surface shield/ng influence turns out to be governing 
[2], and hence, the select ion of the optimal shock format ion conditiolls at a given distance f rom the boundary is 
associated with p rec i se ly  the action of the pulse t ra in  on the substance bomldary. 

4. By knowing the charac te r i s t i c  distance of pulse m e r g e r  and the change in amplitude during merge r ,  
the pa rame te r s  of the resuitant  wave can be var ied  at a given distance f rom the boundary. The possibil i ty 
hence exists  fo r  an increase  in the total e n e r ~  of the wave (as well as of other dynamic parameters )  because 
of using the shock pulse interaction.  ~ turns  out that  for  a fixed impulse I the wave on the boundary (therefore 
for  fixed work  of an impaetor  on a substance) the selection of the lag t ime between the pulses  permits  raising 
the wave energy hu a given distance.  The reason  for  the effect  is that v a r ~ n g  the tag time permits  minimizing 
the losses  in the t rain,  i .e. ,  minimizing the entropy of the mass  of substance between the boundaries and the 
surface on which it is required  to increase  the total energy,  momentum, etc. This can be shown most  s imply 
in the case of large Re numbers  when the solution of (1.1) with the a rb i t r a ry  boundary condition q(0, ~ ) = ef(~ ) 
has the f o r m  

q = ~(~ + ~ ) .  (4.1) 

As remarked  above, the ambiguity aris ing in the profile q with the growth of ~ is el iminated by using 
the '!~qual area  rule" [6] f rom which in pa r t i cu la r  there  follows 

An important  dependence between the amplitudes of the discontinuities in the wave profi le and the quantity 

E01)= ~ q'd~., also resul ts  f rom the las t  equation and (4.1t. To shorten the computations we assume that there 

is just  one discontinuity, denoted by R = ~ + ~q, R• = ~ p +  ~q• where ~p(~) is the coordinate of the discon-  
tinuity, and q_~(~) a re  the values of the function q behinct and before the  discontinuity, respect ively.  Then 

--r - - ~  R +  

(4.3) 

(4.4) 

Evaluating the total derivative (4.4) with respec t  to 7, we find by taking account of (4.3) 

dE(~)/~ = --(t/6)(q § -- q-)~ (4.5) 

]~ can be shown that in the case of severa l  discontinuities there  will be a sum of quantities (q~{i) - q(~))3 in the 
right side of (4.5L The equation (4.5) is a c o r o l l a r y  of the energy conservat ion law for  the case under con- 
sideration. In fact, the r ight side of (4.5) is proport ional  to the entropy jump on the discontinuity [1], while the 
left side with (4.3) taken into account is the change in the total energy of wave motion. The formula  (4.5) r e -  
written in dimensional var iables  means that a change in the wave during passage f rom a Lagrange part icle  
with coordinate m to an adjacent par t ic le  is associated with the change in enthalpy of the part icle  m. F o r m -  
ulas (4.5) can bc obtained f rom the energy conservat ion law even for  the initial sys tem of hydrodynamic equa- 
tions~ however,  we emphasize that nothing more  than (4.1) and (4.2) is required for  its derivation so that the 
resul t  (4.5) is independent of the physical  meaning of the initial sys tem of equations. 

Let us assume that a t ra in  of compress ion  pulses of the form (2.1) is given on the boundary mud (for s im-  
plification) e 1 = ~2, 71 = 72, w-1 = T1 ' T >- 0. Therefore ,  the impulse I on the boundary is fixed. Let us give 
a cer tain fixed value to the Lagrange coordinate ~ ,  and let us examine how the quantity A = E(0) - E{~) changes 
as a function of the lag t ime between pulses T. The dependence A(1 + T / T  t) is represented  in Fig. 4 for  
Re--* ~ ,  where k = 1 + T /T  1, k 2 = (1 + g l - ~ )  1 /2 ,  k 1 = k2/(1 + q-2), X = 0.66(1 - l /k2) ,  A t = 0 .66 (1 -  ~ - / k2 ) .  As 
is seen f rom Fig. 4, the minimum of A and the maximum of the wave energy hold for  1 <_ k _ k 1 (k = k l) and 
corresponds  to m e r g e r  of the discontinuities in ~ .  It hence follows f rom (4.5) that the entropy of the mass  of 
substance between the boundary surface and ~ takes on a minimal value (for a given D. The fact  that the mini-  
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m u m  e n t r o p y  is  a c h i e v e d  in a s e g m e n t  and no t  a t  a po in t  i s  r e l a t e d  to  the f ac t  t ha t  F i g .  4 i s  c o n s t r u c t e d  f o r  
T > 0 (this q u e s t i o n  is  d i s c u s s e d  be low) .  The  d o m a i n  k >_ k 2 in  F i g .  4 c o r r e s p o n d s  to  the  c a s e  when the  s e c o n d  
p u l s e  does  not  s u c c e e d  in  o v e r t a k i n g  the  f i r s t  in  7 -< ~ ,  in th i s  c a s e  both p u l s e s  a r e  p r o p a g a t e d  i ndependen t ly .  

Now, l e t  us  g ive  cond i t ions  of t ype  (2.1) on the  b o u n d a r y  bu t  s u c h  tha t  1~--- ~ ud~ and E~ .~ ~ u~d~ , w h e r e  
- - o o  - - c o  

u = q / e l ,  r e m a i n  c o n s t a n t  in  7 = 0: El(0) = E 0, If(0) = I 0. We t ake  the  a m p l i t u d e  and d u r a t i o n  of the  l e ad ing  
p u l s e  h e r e  a s  the  c h a r a c t e r i s t i c  s c a l e s  of the  a m p l i t u d e  and d u r a t i o n .  Le t  us  s e t  I 0 = 1, E 0 = 2 /3 ;  t h e s e  v a l u e s  
c o r r e s p o n d ,  f o r  k = l ,  s ay ,  to  two s u c c e s s i v e  t r i a n g u l a r  p u l s e s  wi th  uni t  a m p l i t u d e s ,  d u r a t i o n s ,  a ndun i t  d i s t a n c e  
b e t w e e n  d i s c o n t i n u i t i e s .  We wi l l  t hen  have  on the  b o u n d a r y  in  p l a c e  of (2.1) 

t i - - ~ ,  ~ [ 0 ,  ,), =(o, ~)= (~+k- -~ ) /a ,  f ~  [k, k+I~], (4.6) 
0, ~ [ 0 , , )  U [k, k + ~ ] ;  

k is  the  l ag  be tween  d i s c o n t i n u i t i e s  in  the  w a v e .  F o r  k < 1, ~ = [1 + (1 - k)3] / [1  + (1 - k)2], p = [1 + (1 - k)2] /~ ,  
(~ = # / - p ,  r = k. F o r  k >_ 1, ~ = 1, # = 1, a = 1, r = 1. I t  i s  s e e n  t h a t  the  cond i t i ons  on the  b o u n d a r y  a r e  h e r e  
func t ions  of the  one p a r a m e t e r  k. ]f 11 r e m a i n s  c o n s t a n t  f o r  7 > 0, t hen  E 1 c h a r a c t e r i z i n g  the dyna mic  p r o p -  
e r t i e s  of t he  wave  w i l l  d i m i n i s h  in c o n f o r m i t y  wi th  (4.5).  Now, fo r  e a c h  f i x e d  e ~  we v a r y  k on the b o u n d a r y  
in o r d e r  to  ob ta in  the  g r e a t e s t  p o s s i b l e  va lue  of E1 in -~. F o r  the v a l u e s  Re ~ ~ ( n o n d i s s i p a t i v e  med ium)  and 
Re = 12 the  depea]dence El(-  ~,  k) i s  shown in F i g .  5. C u r v e s  .~. and  2 c o r r e s p o n d  to e ~  = 1.2; 3, 4) el" ~ = 4.82; 
5, 6) ~-~  = 7.4,  the  f i r s t  of e a c h  p a i r  of c u r v e s  c o r r e s p o n d s  to  Re ~ r162 the  s e c o n d  to  Re = 12. F o r  f in i t e  Re 
the  p r o b l e m  (1.1), (4.6) was  s o l v e d  n u m e r i c a l l y .  Le t  k be  the  va lue  of the  p a r a m e t e r  k f o r  which the  m a x i m u m  
E I ( ~ ,  k) i s  a c h i e v e d  in  -~. The d e p e n d e n c e s  E I ~ ,  k) have  d i s t i n c t i v e  f o r m  f o r  ~ _< 1 and ~ > 1. F o r ~  _ 1, 
the  m a x i m u m  El(k) i s  r e l a t e d  un ique ly  to  the  p a r a m e t e r  k and c o r r e s p o n d s  to  the  b o u n d a r y  condi t ion  (4.6) f o r  
which  m e r g e r  of the  d i s c o n t i n u i t i e s  o c c u r s  in  a g i v e n  ~ .  F o r  ~ > 1 such  un ique ne s s  does  not  e x i s t .  If k ,  >_ 1 
govern_  the  b o u n d a r y  condi t ion  (4.6), f o r  wh ich  m e r g e r  of the d i s c o n t i n u i t i e s  o c c u r s  in -~, t hen  the  m a x i m a l  
E I ( ~ ,  k) i s  cons tml t  in the s e g m e n t  ~ E [ 1 ,  k . ] .  The c u r v e  5 c o r r e s p o n d s  to k ,  = 1,2 in F i g .  5. T h e r e f o r e ,  if  
70 i s  the  d is taxme of d i s c o n t i n u i t y  m e r g e r  f o r  k ,  = 1 [70 = 2(1 + ~2) /~1] ,  t hen  f o r  f i x e d  ~ >_~0 the  m a x i m u m  E 1 
can be ob t a ined  wi th in  the  d i s t a n c e  -~ and f r o m  the c o n f i g u r a t i o n  k .  = 1 on the  b o u n d a r y  E l (k = 1, ~ > ~0) = 
E ~ E  > i ,  ~ ) .  

Since  the  wave e m e r g e s  on the  a s y m p t o t i c  of a s i n g l e  p u l s e  a f t e r  m e r g e r  of the d i s c o n t i n u i t i e s ,  then c o n -  
d i t ions  c o r r e s p o n d i n g  to  t h i s  s i n g l e  p u l s e  can be g i v e n  on the b o u n d a r y  7 = 0 

[(~ § ~ --  ~)/~, ~ ~ [k + ~t --  1 / ~ ,  k + ~], 
U (0, ~) 

0, ~ [k-F ~ - -  ] / ~ ,  k-k~l .  
(4.7) 

The s o l u t i o n s  wi th  cond i t ions  (4.7) and (4.6) [ c u r v e s  1, 2 (Re --~ ~)  and 3, 4 (Re = 12) in F i g .  6, r e s p e c t i v e l y ,  
f o r  k = 1] a g r e e  wi th  the  po in t  of wave  d i s c o n t i n u i t y  m e r g e r ,  whi le  a t  t h i s  s a m e  po in t  e l ~  the  m a x i m u m  El (  ~ ,  k) 
i s  a c h i e v e d .  F o r  k ,  --> 1 the  c o n f i g u r a t i o n  (4.7) does  no t  change  on the  b o u n d a r y ,  i . e . ,  a l l  the  s o l u t i o n s  E l ( q ,  k . )  
wi th  the  condi t ions  (4.6) m e r g e  a t  the  i d e n t i c a l  a s y m p t o t i c  (F ig .  6, c u r v e s  1 and 3 f o r  7 > q ~ ,  by d e s c e n d i n g  
e v e r  l o w e r  wi th  the  i n c r e a s e  in k . .  T h e r e f o r e ,  to  ob ta in  the  m a x i m a l  E i ~ ,  k) f o r  ~ > 70, t he  con f igu ra t i on  
(4.6) wi th  k = 1 m u s t  be g iven  on the  b o u n d a r y .  

455 



The conditions on the boundary (4.6) and (4.7) have identical I I = I 0 but different E 1. Let E01 correspond 
to (4.7). To obtain the identical value of the energy E 1 at the point of discontinuity merge r ,  it is necessa ry  to 
give E01/E 1 =~/~'/-~ (1 ~ e _<_ 2, ~ = 1 corresponds to k = 1) on the boundary. Therefore,  waves with two dis-  
continuities are energet ical ly  most  favorable for  distances f rom the boundary ~ >_ ~/0 (where ~ = 1) as com-  
pared with a sol i tary l~ulse (4.7) which yields a wave of the same profile in the m e r g e r  distance of a t rain of 
two pulses.  Let us note that the magnitude of the total energy f o r  weak shock pulses in condensed media is a 
second order  infinitesimal quantity. This is associa ted  with the smal lness  of the initial p r e s s u r e  as com- 
pared to the compress ion  modulus of the medium. 

If a single pulse (4.7) with the total energy Z 1 or  a wave f rom two pulses with the total ene rgy  E2 (4.6) 
is fo rmed for  k = 1 under action on the substance boundary, then to obtain an identical wave at the distances 
in a condensed medium, it is neces sa ry  to contribute a total energy 

z~ Eol V~ (4.8) 
E~- E o -- 

t imes g r e a t e r  on the boundary in a single pulse. Fo r  media descr ibed by the equation of state of an ideal gas,  
this relationship has the fo rm 

zl (n-- t) (V2-- t) 
z~ - t +  3/8+n--1  (4.9) 

For  ~ _< 0.5 formula  (4.9) yields E l / E  2 <_ 1.1 for  n = 3. Formal ly  here  for  e -~ ~, E 1/E 2 -~ 4"2. 

The relat ionships (4.8) and (4.9) are  valid for  the case when dissipation can be neglected or  when the 
Reynolds numbers  take on large but finite values (Re >> 1). 

As is seen f rom Fig. 5, the maximum El( ~, k) in a dissipative medium is shifted somewhat relative to 
the maximum for  no dissipation (for identical e t a ) .  Computations show that if the evolution of El( ~, ~) is 
t raced ,  then the distance ep /  at which the configuration (4.6) with k = k  is optimal is achieved in a domain 
where E~V~(V, k) < 0 (the domain B on curve 4 in Fig. 6), as Re ~ oo this domain degenerates  into a point (the 
point A on curve 2 in Fig. 6), in which the f i r s t  derivat ives E ~  undergo a discontinuity, and the mean second 
derivative remains  less  than zero .  
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